INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19–0601/2020/23–2–484–492 DOI: 10.17957/IJAB/15.1314 http://www.fspublishers.org

Full Length Article

Molecular Characterization and Transcription Profiling of NAC Genes in *Lilium pumilum* under Abiotic Stresses

Chunjing Guan, Ying Wang and Yanni Zhang*

College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China *For correspondence: zhangyanni808@126.com Received 09 April 2019; Accepted 04 November 2019; Published 16 January 2020

Abstract

The NAC transcription factors family is one of the plant specific families, which plays a key role in plant biological processes, including the responses to environmental stimuli. However, there are few studies on the NAC gene in Lilium pumilum. In the present study, a total of 21 NAC genes were used to encode the NAC protein. Most NACs contained a complete NAC DNAbinding domain. The RT-PCR indicated that the LpNAC genes were expressed in roots, bulbs and leaves of L. pumilum under salt, drought, low temperature, and abscisic acid (ABA) treatment. The results indicated an important role of NAC in abiotic stress tolerance and ABA-dependent stress signal transduction pathway. Under various abiotic stresses, the LpNAC9 and LpNAC17 were highly expressed in roots. The expression of LpNAC5, LpNAC10, LpNAC19 and LpNAC20 in bulbs increased more than twice as much as that in control group. Similarly, the LpNAC2, LpNAC8, LpNAC17 and LpNAC20 in leaves were up-regulated by all stress. In conclusion, the resistance of L. pumilum to stress environment maybe partly related to the expression of NAC gene. This is first studies to report the NAC gene family of L. pumilum. It clarifies the functions of NACs when plants are subjected to abiotic stress and provides a basis for selecting suitable genes to improve plant stress resistance by molecular techniques. © 2020 Friends Science Publishers

Keywords: Abiotic stress; Gene expression; LpNAC; Lilium pumilum; ABA

Introduction

Cold, drought, high salinity and other environmental factors, are key triggers for altering gene expression patterns and plant growth and metabolism. NAC transcription factors play an important role during plant development, growth and stress response (Le et al. 2011). Transcription factors in plants are considered as stress response genes, which encode important metabolic or regulatory proteins, for instance MYB, DERB, bZIP, WRKY, NAC and AP2/ERF (Alves et al. 2013; Yao et al. 2016). NAC (NAM.ATAF1/2 and CUC1/2) domain proteins, a family of transcription factors, play a role in stress response, growth and development of plant (Jensen et al. 2010). NAC transcription factors contain a highly conservative N-terminal DAN domain and differentiated C-terminal domain. The N-terminal region consists of about 150 amino acids, including five subdomains A, B, C, D and E (Ooka et al. 2004). So far, many NAC genes have been identified in different plants, including 88 members of pigeon pea (Satheesh et al. 2014), 32 members of ramie (Liu et al. 2014a), 204 members of Chinese cabbage (Liu et al. 2014b), 37 members of pine (Pascual et al. 2015) and 86 members of common bean (Wu et al. 2016).

It has been documented that NAC proteins participated

in all aspects of plant development, including flowering (Yu *et al.* 2014), leaf senescence (Shah *et al.* 2014), seed germination (Han *et al.* 2015), cell wall synthesis (Liu *et al.* 2014a), cell death (Wang *et al.* 2015), xylogenesis (Yang *et al.* 2015) and hormone signaling (Han *et al.* 2015). These are involved in abiotic and biological stress responses.

NAC proteins have their own characteristics in many plants. Transgenic plants overexpressing CarNAC2 in chickpea have lower germination vigor and later flowering than wild chickpea (Yu et al. 2014). The productivity of transgenic plants expressing the barley NAC transcription factor HvSNAC1 increased significantly (Abdallat et al. 2014). In addition, ectopic wall deposition was observed in overexpressed MusaVND2 or MusaVND3 transgenic banana plants (Negi et al. 2015). NAC family genes in Gossypium hirsutum L. may be involved leave aging (Shah et al. 2014). SINACI acts as a NAC protein of stressresponse and participates in ABA-dependent signaling pathway (Li et al. 2014). In Arabidopsis, ANAC019, ANAC055 and ANAC072 are associated with high salinity, drought and ABA treatment (Tran et al. 2004), ATAF1, as a transcriptional regulator, negatively regulates the expression of stress response genes in Arabidopsis under drought stress (Lu et al. 2007). The overexpression of CarNAC4 improves the expression of stress response

genes, such as COR15A, ERD10, RD29A, KIN1, COR47 and DREB2A, suggesting that *CarNAC4* acts as a transcription factor induced by the regulation of salt and drought stress response (Yu *et al.* 2016). Of 57 NAC genes in the two elites rice, 23 are regulated by NaCl (García-Morales *et al.* 2014).

L. pumilum originated in the cold area of northern China. It has a high ornamental value because of its beautiful flowers and bright red color. L. pumilum has strong tolerance to abiotic stresses such as cold, drought, salt and alkalinity and has edible and medicinal value (Zhang et al. 2016). These traits make L. pumilum is a good source for studying the mechanism of stress tolerance. Cold stress has a negative impact on growth, and cold tolerance is a complex trait. Its expression depends on the interaction of different physiological, molecular and morphological characteristics. The study of plant tolerance mechanism to low temperature stress can provide information for improving plant cold tolerance through genetic modification. Therefore, the cold stress produced by 4°C treatment creates a good model of natural low temperature. In this study, four transcripomes from L. pumilum bulb treated at 4°C were constructed by high-throughput sequencing. Real-time PCR polymerase chain reaction was used to further study NAC response patterns to low temperature, drought, salinity and ABA expression. Furthermore, 21 LpNAC genes with complete NAM domain and complete open reading frames were explored.

Materials and Methods

Identification of NAC family genes in *L. pumilum* transcripts

The experimental materials were the L. pumilum bulbs aged 2-3 year (the circumference was 4-6 cm). L. pumilum was planted in the nursery of Northeast Forestry University. In mid-October 2014, single-headed L. pumilum bulbs without pests or diseases were harvested, treated with carbendazim WP for about 30 min, then washed and dried. Bulbs were stored in wet perlite which has been sterilized by high temperature and preserved in the 4°C refrigerator. In previous studies, we found that it took about 90 days for L. pumilum bulbs to complete dormancy release from 4°C (low temperature) treatment. The superficial structure of bulb organs showed that 0, 30, 60, and 90 days were the key period for releasing dormancy of L. pumilum bulbs. Therefore, four transcriptomes from L. pumilum bulbs were constructed by high-throughput sequencing using RNA-seq technology after 0, 30, 60 and 90 days of treatment at 4°C. The keywords "NAC", "no apical meristem" or "NAM" were used to query these single gene annotations for identifying NAC genes. The ORF of all NAC genes was analyzed NCBI ORF by finder (https://www.ncbi.nlm.nih.gov/orffinder//) and the NAC domain was examined by NCBI CDD searcher (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Baranwal and Khurana, 2016; Bhattacharjee *et al.* 2017). NAC genes with these domains in the *Arabidopsis* genome were downloaded from the TAIR databases (http://www.arabidopsis.org/) (Wei *et al.* 2016).

Bioinformatics analysis of NAC family

NAC proteins and Arabidopsis were used for studying phylogenetic tree. These sequences were aligned through BioEdit software with Clustal W. A bootstrapped Neighbor-Joining (NJ) tree was prepared in MEGA 5.0 software. LpNAC MTFs were predicated using the TMHMM server 2.0 (http://www.cbs.dtu.dk/services/TMHMM/). In order to evaluate the evolutionary relationship among identified L. pumilum NACs (Clement et al. 2008; Hall, 2013), the isoelectronic point prediction for each LpNAC protein and theoretical molecular weight were calculated using the **ExPASy** compute tool (http://expasy.org/tools/protparam.html/) (Shang et al. 2013). The protein secondary structure of each LpNAC predicted byhttp://npsa-prabi.ibcp.fr/cgiwas bin/npsa_automat.pl?page=npsa_sopma.html/ (Combet et al. 2000; Lindemose et al. 2014). The transmembrane domain was predicted by the TMHMM server 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) (Wang et al. 2013; Shang et al. 2016). We used the online Plant-PLoc server 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) for subcellular localization prediction (Bailey and Elkan, 1994).

Plant growth and stress treatment

Shoot regeneration was collected directly from bulb scales on Murashige and Skoog (MS) medium (MS + 6 BA 1.5 mg/L + NAA 0.5 mg/L). The explants were cultured on bud induction medium for 30 days. The multiple shoots or bulblets (3-5 cm in height) induced clumps were divided into single bulblets or shoots and transferred to sub-culture medium (MS + 6BA 1.0 mg/L + NAA 0.2 mg/L) for shoot and bulblet proliferation. When seedlings reached 5-6 cm, they were placed in semi-intensive MS (1/2 MS + IBA 0.5 mg/L) medium and rooted in the greenhouse (16:8 h lightdark;75-80% relative humidity; 23°C). The rooted shoots were placed in fresh water for 7 days. Then, the samples were treated with 200 mM NaCl (salt stress), 20% PEG6000 (drought stress),150 μM ABA and low temperature (2°C) for 1, 3, 6, 12, 24 and 48 h respectively. Fresh-water control was also carried out. After processing, the bulbs, leaves and roots of each sample seedling were collected at a specified time after treatment, collected and frozen immediately in liquid nitrogen and stored at -80°C until they were needed.

RNA isolation and first strand DNA synthesis

Total RNA of each sample was extracted by the CTAB

method and a few modifications were made. RNA was treated with RQ1 RNase-Free DNase (ReverTra Ace qPCR RT Master Mix with gDNA Remover. TOYOBO, Japan) before the synthesis of cDNA. Follow the instruction manual, make sure there is no genomic DNA contamination and the first-strand cDNA was synthesized using the Rever Tra Ace qPCR RT Kit (TOYOBO, Japan).

Quantitative real-time PCR

Real-time PCR was performed in the Poche Light Cycler96 and the genes was used as internal references. Three biological replicates were used for each sample and three technical replicates were used for each biological replica. All primers were designed with Primer3 web version 4.0.0 (http://primer3.ut.ee/), as shown in Table 1. The reaction mixture (20 μ L) contained 10 μ L of SYBR Green Real-time PCR master Mix, each primer 0.5 µL and 1 μ L of cDNA template. The amplification was completed and the cycle parameters were as follows: initial denaturation at 94°C for 30 s; denaturation at 94°C for 5 s; annealing at 58°C for 15 s; and extension at 72°C for 10 s for 45 cycling parameters. In order to determine the specificity of the reaction, the melting curve analysis of the product was analyzed immediately after the last PCR cycle, using 97°C for 10 s, 55°C for 60 s and 97°C for 1 s. The relative expression level was calculated as the transcription level under stress treatment divided by the transcription level without treatment (Hussain et al. 2017).

Results

Identification and sequence analysis of NAC genes in *L. pumilum*

Four transcriptomes were constructed from L. pumilum bulbs treated at 4°C. Through single gene annotation, 11 genes were annotated as "NAC transcription factor" and 38 genes were annotated "no apical meristem". NAC genes with overlapping sequences were deleted. Finally, out of 49 NAC genes, 21 NAC genes containing the full-length ORF were identified, named as LpNAC1 to LpNAC21. Except for LpNAC18, all the LpNACs genes were annotated as "NAM superfamily" in the NCBI CDD searcher. LpNAC18 was annotated as "NAC superfamily". These LpNACs encoded proteins ranging from 51 to 890 amino acids, predicted sizes from 5.97 to 10KD, pI values from 4.26 to 9.61 amino acid and hydrophobicity from -8.24 to -1.553. LpNACs gene wasa hydrophobic protein. Exceptfor LpNAC1 and LpNAC15, all LpNACs genes were classified as unstable proteins. The protein structure of LpNACs was mainly composed of irregular curls, α -helix and β -angle, which was dispersed in the protein. Among 21 LpNAC proteins, only one TM was found in LpNAC19 and LpNAC20 and transmembrane sequences were found in C-terminal regions, 626-648 and 632-654.

Phylogenetic analysis of LpNAC protein

All *LpNACs* had a high conservative N-terminal DNAbinding domain, which is a typical NAC domain with five common subdomains (A–E) (Fig. 1). In addition, *LpNACs* were localized in the nucleus. All *LpNAC* proteins were divided into seven groups together with the *Arabidopsis* NAC proteins (designated as NAC-a to NAC-g) (Fig. 2).

Expression profiles of *LpNACs* genes under various abiotic stresses

LpNAC1 showed significant upward regulation at 12 h in roots (Fig. 3). In bulbs and leaves, LpNAC8 showed upregulated at all point times of salt stress treatment and the expression level in roots was gradually increased but downregulated at 48 h. LpNAC10 was obviously up-regulated at all point times of stress in bulbs and roots. In the three tissues, LpNAC20 showed a significant regulatory effect at all time points after salt stress treatment, different from LpNAC20, the LpNAC3 and LpNAC16 showed a significant down-regulation effect. At 48 h, LpNAC21 in the bulbs was significantly up-regulated. Under stress, the total gene expression level of NAC-c and NAC-d groups was up-regulated, while that of NAC-b and NAC-f groups was down-regulated (Fig. 4A). After 6 h of salt treatment, the overall expression levels of NAC-e and NAC-g groups decreased (Fig. 4B). The overall expression level of NAC-a group was upregulated except for 6 h (Fig. 4C).

Under cold treatment (Fig. 5), in three organs, the expression of *LpNAC1* was up-regulated at 12–48 h, the expression of *LpNAC10* and *LpNAC17* was significantly induced at all treatment time points, and the expression of *LpNAC20* was up-regulated at 6–48 h. The expression of *LpNAC5* was significantly up-regulated at 12 h in bulbs. The expression of *LpNAC16* was inhibited in bulbs and roots and LpNAC13 was down-regulated in leaves and bulbs during the whole treatment. The expression levels of NAC-a, NAC-c, NAC-d, NAC-f and NAC-g were up-regulated (Fig. 6A and 6B).

Under drought stress (Fig. 7), the expression levels of *LpNAC1, LpNAC8, LpNAC13, LpNAC16* and *LpNAC20* in roots and leaves increased at all stress times. *LpNAC5* in the bulbs was up-regulated. *LpNAC10* showed a regulatory effect at all treatment time points of three organs, while *LpNAC11* showed an up-regulated effect after 3 h of stress treatment. *LpNAC17* expression in roots was up-regulated, reaching the highest level at 24 h. The total expression levels of NAC-b, NAC-c and NAC-d in bulbs were up-regulated at all stress time points (Fig. 8B). The overall expression levels of NAC-a, NAC-c,

Table 1: Primer sequences of LpNAC	gene designed	by using Primer3 web v	version 4.0.0 (http://primer3.ut.ee/
------------------------------------	---------------	------------------------	--------------------------------------

Gene name	Nucleotide sequence	Gene name	Nucleotide sequence
LpNAC1 F	GCTTCAGGTAGGTATCCGCT	LpNAC11 R	CACTTTGTCTTCGTCCCCAC
LpNAC1 R	TGAACCCTCCAGCTCAAGAG	LpNAC12 F	AGGGCCACAATAGCAGGTTA
LpNAC2 F	ACTTCAAGTATCCCCGTCGG	LpNAC12 R	TGCACTCGTTCGGATCCATA
LpNAC2 R	TCCTCCCATTCAACCCCTTC	LpNAC13 F	CGGCAAGTCATGGATTCTGG
LpNAC3 F	GCAGATGGGTGATGCATGAG	LpNAC13 R	CTCTCTCTGAAACCACCCGT
LpNAC3 R	GGTACATGTGAGGTGGGGAT	LpNAC14 F	GCTTCCGACAATGGCTACTG
LpNAC4 F	GTTTCTGCTGCACCTTTGGA	LpNAC14 R	CTCCTTCCACTACTGCTGCT
LpNAC4 R	GATGGAATCGGAAACCAGGC	LpNAC15 F	TCACCAGTCTCCCACATCAG
LpNAC5 F	GCTTCCGATTTCATCCCACC	LpNAC15 R	TCACGAAGACTCACACCCTC
LpNAC5 R	CTTCCCAGTCACCTTCCAGT	LpNAC16 F	ACTTCTTCTGCCAGCGAGAC
LpNAC6 F	CGAGCCAAACATGATGCAGT	LpNAC16 R	TTGGGGGCTCTACCCATGTA
LpNAC6 R	ATCCCTCCCAGCCTGATAGA	LpNAC17 F	GAAGGCGCTGGTGTTCTATG
LpNAC7 F	AACGGCAGTGGTGGATTCTA	LpNAC17 R	AACCAAACTATGCCGCGTAC
LpNAC7 R	AGTCTTTCTCATGCCGACGA	LpNAC18 F	TATGTGAGGCAGCTTCCACA
LpNAC8 F	TTTCGATTCCATCCCACCGA	LpNAC18 R	AAAACTGAAGGGTGCTGAGC
LpNAC8 R	TTCCAGTCGCCTTCCAGTAG	LpNAC19 F	CGGAGAGCAGGGTCAATTTG
LpNAC9 F	AGGTTTCATCCCACTGACGA	LpNAC19 R	AAGGCCTGTGAGTTCTCCTG
LpNAC9 R	GTTGCTCGGTTGGTACGAAA	LpNAC20 F	CCCTAGTTCACCTTGCCAGA
LpNAC10 F	TGGTGTTCTACATGGGGAGG	LpNAC20 R	CGAGGTCCAGATCCTTTGGT
LpNAC10 R	ACGTTGATGGCATTGTCTCG	LpNAC21 F	CAATGTTCGGATCCCAGCAG
LpNAC11 F	ACCGAGCAGTGGTTCTTCTT	LpNAC21 R	AGAGGGCCAGACTTGTCTTC

Fig. 1: Identification of conserved NAC subdomains. Multiple sequence alignments of 21 *LpNACs* and five representative *Arabidopsis* NACs were performed with Clustal W using BioEdit software. The consensus NAC subdomain (A-E) are indicated by lines above the sequence

NAC-d and NAC-g in leaves were up-regulated by all stress treatment (Fig. 8C).

Effect of abscisic acid on the expression of the *LpNACs* genes in *L. pumilum*

In roots (Fig. 9A), genes increased rapidly at 1 h of ABA stress, such as *LpNAC1*, *LpNAC2*, *LpNAC3*, *LpNAC4*, *LpNAC5*, *LpNAC6* and *LpNAC20* and decreased after 3–6 h. In bulbs (Fig. 9B), except for *LpNAC6* and *LpNAC18*, the other *LpNAC* genes were obviously induced within 48 h. In roots and leaves (Fig. 9C), the expressions of *LpNAC16* and *LpNAC17* were up-regulated. The overall expression levels of NAC-c were up-regulated before 3 h of stress, but after 12 h of stress, the expression level of NAC-

f was up-regulated (Fig. 10A). The total expression level of NAC-a was up-regulated after 12 h of stress, while the expression level of NAC-b and NAC-c were up-regulated at 48 h of stress (Fig. 10B). The overall expression level decreased gradually in all groups (Fig. 10C).

Discussion

In order to survive under various environment conditions, plants adopt different strategies to cope with adverse conditions. Previous research has indicated that NAC gene plays an important role in abiotic stress response. In present study, several members of the *LpNAC* gene were up-regulated by various abiotic stresses (cold, salt and drought), suggesting that they might be crucial

Fig. 2: Phylogenrtic analysis of NAC protein sequence. Phylogenrtic relationship of NAC protein from *L. pumilum* and Arabidopsis. The deduced 21 NAC protein sequence and 76 *NAC* genes were aligned by Clustalx and the un-rooted NJ tress was constructed using MEGA 5.0 with 1,000 bootstrap replicates. The sequence of *Arabidopsis* NAC domain proteins was downloaded from the *Arabidopsis* genome TAIR

Fig. 3: Expression patterns of the 21 *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to salt stress (200 m*M* NaCl) with different stress hours. Relative expression level = \log_2 (transcription level under stress treatment/transcription level under control conditions). Error bars were obtained from multiple replicates of the real-time PCR

Fig. 4: Expression patterns variations with stress time for the six groups *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to salt stress (200 m*M* NaCl). Relative expression level = \log_2 (transcription level under stress treatment/transcription level under control conditions)

Fig. 5: Expression patterns of the 21 *LpNACs* genes in roots (**A**), bulbs (**B**) and leaves (**C**) of the *L. pumilum* seedlings subjected to low temperature stress (2°C) with different stress times. Relative expression level=log₂ (transcription level under stress treatment/transcription level under control conditions). Error bars were obtained from multiple replicates of the real-time PCR

Fig. 6: Expression patterns variations with stress time for the six groups *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to low temperature stress (2°C). Relative expression level = \log_2 (transcription level under stress treatment/transcription level under control conditions)

Fig. 7: Expression patterns of the 21 *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to PEG drought stress (20% PEG6000) with different stress times. Relative expression level = \log_2 (transcription level under stress treatment /transcription level under control conditions). Error bars were obtained from multiple replicates of the real-time PCR

factors participating in the response of various signal transduction pathways to abiotic stress.

Transcriptional responses are regulated by transcriptional, posttranslational and trans-locational mechanisms (Kim *et al.* 2009). Genome analysis found that there were at least 18 and 5 NAC MTFs (Membrane-bound transcription factors) in rice and *Arabidopsis* respectively,

Fig. 8: Expression patterns variations with stress time for the six groups *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to PEG drought stress (20% PEG6000). Relative expression level = \log_2 (transcription level under stress treatment/transcription level under control conditions)

Fig. 9: Effect of ABA on the expression of the 21 *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings with various times. Relative expression level $= \log_2$ (transcription level under stress treatment/transcription level under control conditions). Error bars were obtained from multiple replicates of the real-time PCR

including a α -helical tranmembrane motif in C-terminal regions. NAC MTFs of *Arabidopsis* mediate cytokinin signaling during endoplasmic reticulum stress responses (Kim *et al.* 2007). MTFs were stored in the cytoplasm in the form of dormancy (Kim *et al.* 2007). They are involved in various environmental stimuli. Several MTFs located in the nucleus regulate the expression of target genes. Phylogenetic

analysis of LpNACs and Arabidopsis indicated that LpNAC19 and LpNAC20 may play a role in stress responses. Genes with related functions tend to fall into one group. The unique function of LpNAC protein in L. pumilum was predicted. NAC-a and NAC-e groups include most stressrelated genes of NAC family in Arabidopsis (NTL6, NTL8, ANAC013 and ANAC061), which are membrane-bound transcription factors that regulate both biological and abiotic stress signal transduction or endoplasmatic reticulum stress responses (Seo and Park, 2010; Kim et al. 2012; Clercq et al. 2013; Yang et al. 2014). These studies suggest that LpNACs may also play a potential role in biological and abiotic stress signals. LpNAC9, LpNAC3 and LpNAC15 were separated from other LpNACs genes and aggregated into NAC-b group together with CUC1, CUC2, ANAC053 and ANAC045, which played an important role in shoot organ boundary delimitation (Furuta et al. 2014; Kamiuchi et al. 2014). The expression of NAC genes of Arabidopsis during petal differentiation and expansion indicates that LpNACs genes may also be involved in plant multicellular organismal development and organ initiation differentiation (Kamiuchi et al. 2014). LpNAC1, LpNAC8 and LpNAC17 belong to the NAC-c group and contain most stress-related genes, such as ATAF1, ATAF2 and ANAC047, which are central regulators of plant defense and hormone metabolism development (Delessert et al. 2005; Wang and Culver, 2012; Liu et al. 2016). Therefore, LpNACs genes may play a role in regulating responses to abiotic stresses and hormone signaling. LpNAC6 and LpNAC10 were divided into the NAC-d group, including LOV1, ANAC36 and ANC042, which were induced in leaf and inflorescence stem morphogenesis and flower development (Kato et al. 2010). In particular, ANAC042 is involved in the regulation of phytoalexin biosynthesis, a key transcription factor in Arabidopsis (Saga et al. 2012). The LpNAC gene in this group may be involved in flower and leaf development. The sequence was clustered with SND2, SND3 and ANAC075 genes in Arabidopsis (the NAC-f group), which were involved in secondary cell wall formation (Zhong et al. 2008; Grant et al. 2010; Hussey et al. 2011; Sakamoto and Mitsuda, 2015). LpNAC21 and LpNAC14 may be involved in the formation of secondary cell wall. The NAC-g group contained LpNAC18 and no NAC genes was collected from Arabidopsis. However, the functions of LpNAC18 needs further verification. Our phylogenetic analysis of LpNACs can identify potential stress response LpNAC genes, which can be preferentially used for further research, especially in the NAC-a group. Therefore, we further explored the role of LpNACs in stress response.

In this study, the stress- responsive *LpNACs* were identified by qRT-PCR. Different expression patterns provide important information for the functions of *LpNAC* genes. These results suggest that NAC family genes may be negatively or positively related to the stress response of *L. pumilum*. Our results suggest that *LpNAC20* may play an active effect in responding to salt stress in *L. pumilum*,

Fig. 10: Expression patterns variations with stress time for the six groups *LpNACs* genes in roots (**A**), bulbs (**B**), and leaves (**C**) of the *L. pumilum* seedlings subjected to ABA. Relative expression level = \log_2 (transcription level under stress treatment/transcription level under control conditions)

because it was up-regulated under stress. Previous reports had indicated that NAC genes play an active role in response to salt stress, such as ATAF1, NAC57 and BoNAC019 (Liu et al. 2016; Yao et al. 2018; Wang et al. 2018a). In contrast, LpNAC3 and LpNAC16 may play a negative regulatory role in salt stress of L. pumilum. It is reported that some NAC genes, including SINAC35, MdNAC029/MdNAP and PbeNAC1, are induced under cold stress (Jin et al. 2017; Wang et al. 2018b; An et al. 2018). Similar to those genes, LpNAC10 and LpNAC17 are highly correlated with cold stress. They may play an important role in the low temperature stress of L. pumilum. Other NAC genes, CarNAC2, CarNAC4 and SINAC8, play an active regulatory role in plant drought stress (Yu et al. 2014, 2016; Wu et al. 2018). The expression of LpNAC10 and LpNAC20 in roots, bulbs and leaves was induced by drought treatment, which indicated that they might be involved in the drought stress response of L. pumilum. Almost all LpNAC groups responded to various stress. In particular, the NAC-a, NAC-c and NAC-d groups suggest their role in abiotic stresses resistance. For example, LpNAC19 and LpNAC20(NAC-a group), LpNAC17(NAC-c group) and LpNAC10(NAC-d group) were highly expressed in L. Pumilum under abiotic stresses. Especially under drought, high salinity, cold and ABA treatments, the expression of LpNAC10 and LpNAC17 in roots, leaves and bulbs was induced. This indicated that they might play a role under abiotic stress and be closely influenced by ABA concentration. In bulbs, LpNAC5 was highly involved under NaCl, PEG, cold and ABA stress. However, in leaves and roots, LpNAC5 expression was down-regulated or unchanged under stress. This suggests that LpNAC5 may be involved in the development of bulbs.

ABA plays a crucial role in signal transduction pathways of different environmental stimuli and stress response (Ha *et al.* 2014). We analyzed the expression level of each *LpNAC* gene in *L. pumilum* seedlings treated with different ABA levels. Under ABA stress, most of the *LpNACs* genes in different tissues were significantly induced. It is speculated that these *LpNACs* genes may play a role in ABA-dependent abiotic stress signal transduction pathway.

Conclusion

The sequence, phylogenetic and comprehensive expression patterns of 21LpNAC genes of L. pumilum under different stress conditions was comprehensively analyzed. We founded that some genes had high research value for abiotic stress of L. pumilum, such as LpNAC5, LpNAC10, LpNAC17 and LpNAC20. The LpNACs genes of Lilium pumilum can be clearly improved in leaves, bulbs or roots by NaCl, PEG and cold stresses. LpNAC5 may be involved in bulb development. The role of NAC genes in L. pumilum in responding to abiotic stress is related to ABA dependent stress signaling pathway. Our results suggested that the role of NACs in abiotic stress is helpful to select excellent transcription factors for laying a foundation for lily resistance breeding. In conclusion, the comprehensive expression patterns of 21 LpNACs genes in L. pumilum under different stress conditions provide new information for determining tissue-specific expression under abiotic stress.

Acknowledgements

This research was supported by the Fundamental Research Funds for Central Universities (grant number 2572019BK04), the Heilongjiang Natural Science Foundation (grant number *LH2019C004*) and the National Natural Science Foundation of China (31470698). The authors thank Dr. Qingjie Guan for his technical guiding and Dr. Yunwei Zhou for her kind providing the experimental materials.

References

- Abdallat AM, JY Ayad, JMA Elenein, ZA Ajlouni, WA Harwood (2014). Overexpression of the transcription factor HvSNAC₁ improves drought tolerance in barley (Hordeum vulgare L.). Mol Breed 33:401–414
- Alves MS, SP Dadalto, AB Gonçalves, GBD Souza, VA Barros, LG Fietto (2013). Plant bZIP transcription factors responsive to pathogens: a review. *Intl J Mol Sci* 14:7815–7828
- An J, R Li, F Qu, C You, X Wang, Y Hao (2018). An apple NAC transcription factor negatively regulates cold tolerance via CBFdependent pathway. J Plant Physiol 221:74–80
- Bailey TL, C Elkan (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Intl Conf Intell Syst Mol Biol 2:28–36
- Baranwal VK, P Khurana (2016). Genome-wide analysis, expression dynamics and varietal comparison of Nac gene family at various developmental stages in *Morusnotabilis Mol Genet Genomics* 291:1305–1317
- Bhattacharjee P, R Das, A Mandal, P Kundu (2017). Functional characterization of tomato membrane-bound NAC transcription factors. *Plant Mol Biol* 93:511–532

- Clement M, A Lambert, D Herouart, E Boncompagni (2008). Identification of new up-regulated genes under drought stress in soybean nodules. *Gene* 426:15–22
- Clercq I, V Vermeirssen, OV Aken, K Vandepoele, MW Murcha, SR Law, A Inzé, S Ng, A Ivanova, D Rombaut, BVD Cotte, P Jaspers, YYVD Peer, J Kangasjärvi, J Whelan, FV Breusegem (2013). The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 259:3472–3490
- Combet C, C Blanchet, C Geourjon, G Deléage (2000). Network Protein Sequence Analysis. *Trends Biochem Sci* 25:147–150
- Delessert C, K Kazan, IW Wilson, DVD Straeten, J Manners, ES Dennis, R. Dolferus (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in *Arabidopsis*. *Plant J* 43:745–757
- Furuta KM, SR Yadav, S Lehesranta, I Belevich, S Miyashima, J Heo, A Vaten, O Lindgren, BD Rybel, GV Isterdael, P Somervuo, R Lichtenberger, R Rocha, S Thitamadee, S Tahtiharju, P Auvinen, T Beeckman, E Jokitalo, Y Helariutta (2014). Plant development. *Arabidopsis* NAC45/86 direct sieve element morphogenesis culminating in enucleation. *Science* 345:933–937
- García-Morales S, FC Gómez-Merino, LI Trejo-Téllez (2014). NAC transcription factor expression, amino acid concentration and growth of elite rice cultivars upon salt stress. Acta Physiol Plantarum 36:1927–1936
- Grant EH, T Fujino, EP Beers, AM Brunner (2010). Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in *Arabidopsis* and *Populus*. *Planta* 232:337–352
- Ha CV, MN Esfahani, Y Watanabe, UT Tran, S Sulieman, K Mochida, DV Nguyen, LSP Tran (2014). Genome-wide identification and expression analysis of the *CaNAC* family members in chickpea during development, dehydration and ABA treatments. *Plos One* 9:1–22
- Hall BG (2013). Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235
- Han X, Z Feng, D Xing, Q Yang, R Wang, L Qi, G Li (2015). Two NAC transcription factors from *Caragana intermedia* altered salt tolerance of the transgenic *Arabidopsis*. *BMC Plant Biol* 15:208
- Hussain RM, M Ali, X Feng, X Li (2017). The essence of NAC gene family to the cultivation of drought-resistant soybean (*Glycine max* L. Merr.) cultivars. *BMC Plant Biol* 17:55
- Hussey SG, E Mizrachi, AV Spokevicius, G Bossinger, DK Berger, AA Myburg (2011). SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in *Arabidopsis* fibres and increases fibre cell area in Eucalyptus. *BMC Plant Biol* 11:173
- Jensen MK, T Kjaersgaard, MM Nielsen, P Galberg, K Petersen, C O'Shea, K Skriver (2010). The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signaling. Biochem J 426:183–196
- Jin C, K Li, X Xu, H Zhang, H Chen, Y Chen, J Hao, Y Wang, X Huang, S Zhang (2017). A novel nac transcription factor, PbeNAC1, of *Pyrus betulifolia* confers cold and drought tolerance *via* interacting with PbeDREBs and activating the expression of stress-responsive genes. *J Plant Physiol* 211:74–80
- Kamiuchi Y, K Yamamoto, M Furutani, M Tasaka, M Aida (2014). The CUC1 and CUC2 genes promote carpel margin meristem formation during *Arabidopsis* gynoecium development. *Front Plant Sci* 5:165
- Kato H, T Motomura, Y Komeda, T Saito, A Kato (2010). Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in *Arabidopsis thaliana*. J Plant Physiol 167:571–577
- Kim MJ, MJ Park, PJ Seo, JS Song, HJ Kim, CM Park (2012). Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. *Biochem J* 448:353–363
- Kim SG, S Lee, PJ Seo, SK Kim, JK Kim, CM Park (2009). Genome-scale screening and molecular characterization of membrane-bound transcription factors in *Arabidopsis* and rice. *Genomics* 95:56–65

- Kim SY, SG Kim, YS Kim, PJ Seo, M Bae, HK Yoon, CM Park (2007). Exploring membrane-associated NAC transcription factors in *Arabidopsis*: implications for membrane biology in genome regulation. *Nucl Acids Res* 35:203–213
- Le DT, R Nishiyama, Y Watanabe, K Mochida, K Yamaquchi-Shinozaki, K Shinozaki, LSP Tran (2011). Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276
- Li XL, X Yang, YX Hu, XD Yu, QL Li (2014). A novel NAC transcription factor from *Suaeda liaotungensis* K. enhanced transgenic *Arabidopsis* drought, salt and cold stress tolerance. *Plant Cell Rep* 33:767–778
- Lindemose S, MK Jensen, JVD Velde, C O'Shea, KS Heyndrickx, CT Workman, K Vandepoele, K Skriver, FD Masi (2014). A DNAbinding-site landscape and regulatory network analysis for NAC transcription factors in *Arabidopsis thaliana*. *Nucl Acids Res* 42:7681–7693
- Liu T, S Zhu, Q Tang, S Tang (2014a). Identification of 32 full-length NAC transcription factors in ramie (*Boehmeria nivea* L. Gaud) and characterization of the expression pattern of these genes. *Mol Genet Genomics* 289:675–684
- Liu T, X Song, W Duan, Z Huang, G Liu, Y Li, X Hou (2014b). Genomewide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese Cabbage. *Plant Mol Biol Rep* 32:1041–1056
- Liu Y, J Sun, Y Wu (2016). Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962
- Lu P, N Chen, R An, Z Su, B Qi, F Ren, J Chen, X Wang (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in *Arabidopsis Plant Mol Biol* 63:289–305
- Negi S, H Tak, TR Ganapathi (2015). Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants. *Protoplasma* 253:431–446
- Ooka H, K Satoh, K Doi, T Nagata, Y Otomo, K Murakami, K Matsubara, N Osato, J Kawai, P Carninci, Y Hayashizaki, K Suzuki, K Kojima, Y Takahara, K Yamamoto, S Kikuchi (2004). Comprehensive analysis of NAC family genes in *Oryza sativa* and *Arabidopsis* thaliana. DNA Res 10:239–247
- Pascual MB, FM Cánovas, C Ávila (2015). The NAC transcription factor family in maritime pine (*Pinus pinaster*): molecular regulation of two genes involved in stress responses. *BMC Plant Biol* 15:254
- Saga H, T Ogawa, K Kai, H Suzuki, Y Ogata, N Sakurai, D Shibata, D Ohta (2012). Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant Microb Interact 25:684–696
- Sakamoto S, N Mitsuda (2015). Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant Cell Physiol 56:299–310
- Satheesh V, PT Jagannadham, P Chidambaranathan, PK Jain, R Srinivasan, (2014). NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeon pea (*C. ajanuscajan* (L.) Millspp.). *Mol Biol Rep* 41:7763–7773
- Seo PJ, CM Park (2010). A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals. *Plant Signal Behav* 5:481–483
- Shah ST, CY Pang, A Hussain, SL Fan, MZ Song, R Zamir, SX Yu (2014). Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in *Gossypium hirsutum* L. Plant Cell Tiss Org Cult 117:167–186
- Shang H, Z Wang, C Zou, Z Zhang, W Li, J Li, Y Shi, W Gong, T Chen, A Liu, J Gong, Q Ge, Y Yuan (2016). Comprehensive analysis of NAC transcription factors in diploid *Gossypium:* sequence conservation and expression analysis uncover their roles during fiber development. *Sci Chin Life Sci* 59:142–153

- Shang H, W Li, C Zou, Y Yuan, (2013). Analyses of the NAC transcription factor gene family in *Gossypium raimondii* Ulbr.: chromosomal location, structure, phylogeny and expression patterns. J Integr Plant Biol 55:663–676
- Tran LS, K Nakashima, Y Sakuma, SD Simpson, Y Fujita, K Maruyama, M Fujita, M Seki, K Shinozaki, K Yamaguchi-Shinozaki (2004). Isolation and functional analysis of *Arabidopsis* stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. *Plant Cell* 16:2481–2498
- Wang GD, Q Liu, X Shang, C Chen, N Xu, J Guan, Q Meng (2018a). Overexpression of transcription factor SINAC35 enhances the chilling tolerance of transgenic tomato. *Biol Plantarum* 62:479–488
- Wang J, W Lian, Y Cao, X Wang, G Wang, C Qi, L Liu, S Qin, X Yuan, X Li, S Ren, YD Guo (2018b). Overexpression of BoNAC019, a NAC transcription factor from *Brassica oleracea*, negatively regulates the dehydration response and anthocyanin biosynthesis in *Arabidopsis Sci Rep* 8:1–15
- Wang B, X Guo, C Wang, J Ma, F Niu, H Zhang, B Yang, W Liang, F Han, Y Jiang (2015). Identification and characterization of plant-specific NAC gene family in canola (*Brassica napus* L.) reveal novel members involved in cell death. *Plant Mol Biol* 87:395–411
- Wang N, Y Zheng, H Xin, L Fang, S Li (2013). Comprehensive analysis of NAC domain transcription factor gene family in *Vitis vinifera*. *Plant Cell Rep* 32:61–75
- Wang X, JN Culver (2012). DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus. *BMC Plant Biol* 31:157
- Wei S, L Gao, Y Zhang, F Zhang, X Yang, D Huang (2016). Genome-wide investigation of the NAC transcription factor family in melon (*Cucumis melo* L.) and their expression analysis under salt stress. *Plant Cell Rep* 35:1827–1839
- Wu D, Y Sun, H Wang, H Shi, M Su, H Shan, T Li, Q Li (2018). The SINAC8 gene of the halophyte *Suaeda liaotungensis* enhances drought and salt stress tolerance in transgenic *Arabidopsis thaliana*. *Gene* 622:10–20
- Wu J, L Wang, S Wang (2016). Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biol 16:193
- Yang L, Y Hou, X Zhao, W Lu, Y Li, F Yang, S Tang, K Luo (2015). Identification and characterization of a wood-associated NAC domain transcription factor PtoVNS₁₁ from *Populus tomentosa* Carr. *Trees* 294:1091–1101
- Yang Z, S Lu, M Wang, D Bi, L Sun, S Zhou, Z Song, J Liu (2014). A plasma membrane-tethered transcription factor, NAC062/ ANAC062/NTL6, mediates the unfolded protein response in *Arabidopsis Plant J* 79:1033–1043
- Yao L, Y Jiang, X Lu, B Wang, P Zhou, T Wu (2016). A R2R3-MYB transcription factor from *Lablab purpureus* induced by drought increases tolerance to abiotic stress in *Arabidopsis*. *Mol Biol Rep* 43:1089–1100
- Yao W, K Zhao, Z Cheng, X Li, B Zhou, T Jiang (2018). Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis. Front Plant Sci 9:1–10
- Yu X, H Peng, Y Liu, Y Zhang, Y Shu, Q Chen, S Su, L Ma, H Ma, H Zhang (2014). CarNAC2, a novel NAC transcription factor in chickpea (*Cicer arietinum* L.), is associated with drought-response and various developmental processes in transgenic Arabidopsis J Plant Biol 57:55–56
- Zhang J, M Gai, X Li, T Li, H Sun (2016). Somatic embryogenesis and direct as well as indirect organogenesis in *Lilium pumilum* DC. Fisch., an endangered ornamental and medicinal plant. *Biosci Biotechnol Biochem* 80:1898–1906
- Zhong R, CH Lee, J Zhou, RL McCarthy, ZH Ye (2008). A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in *Arabidopsis*. *Plant Cell* 20:2763–2782